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Abstract
We consider the problem of on-lattice cluster anisotropy in the diffusion-limited
aggregation (DLA) model. On the basis of a recent paper (Bogoyavlenskiy V A
2001 Phys. Rev. E 64 066303), we derive an isotropic quadratic ratio for a set
of aggregation probabilities, in order to grow on-lattice DLA clusters without
anisotropy.

PACS numbers: 61.43.Hv, 05.10.Ln, 05.50.+q, 47.54.+r

The basic model adopted for stochastic simulations of nonequilibrium growth processes in
various natural Laplacian systems, diffusion-limited aggregation (DLA) [1, 2], is known to
produce anisotropic on-lattice clusters—the anisotropy seems to be unavoidable when DLA
algorithms are applied on a grid, so resulting patterns range from weakly directional (for a
classic DLA by Witten and Sander [3–6]) to strongly anisotropic (for a multiple-hit averaging
DLA by Tang [7–12]). While the lattice issue would be considered physical for modelling
nonequilibrium growth in solids (e.g., snowflake-type dendritic crystallization [13–16]), it
raises a fundamental problem when one has to simulate properties of natural systems which
behave as isotropic liquids or quasi-liquids—this is especially important for modelling such
phenomena as dielectric ‘breakdown’ [17], formation of bacteria colonies [18] and viscous
‘fingering’ in Hele–Shaw cells [19] and in porous media [20].

The simplest solution avoiding lattice anisotropy for DLA clusters is to proceed from
on- to off-lattice growth algorithms [21] which are intrinsically isotropic [22, 23]. The
related substitution, however, is fraught with serious drawbacks: (i) first, off-lattice DLA
simulations imply a substantial increase of computational time, which limits both their
efficiency and their applicability; (ii) second, the off-lattice approach considerably hampers a
multiple-hit (ensemble) averaging procedure [24], being essential for the reduction of stochastic
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Figure 1. Typical DLA clusters grown on a square grid (x, y) of spacing a = 1 up to gyration radii
rg = 80a (number of particles attached N varies from 1000 to 2000); aggregation probabilities
{Pi} for lattice sites with different numbers i = 1, . . . , 3 of nearest occupied neighbours are given
by the regular set, P1 = P2 = P3 = 1. We show results for the classic Witten–Sander algorithm
in plot (a) and for the Tang multiple-hit averaging with parameter M = 21, 22 and 24 in plots (b),
(c) and (d), respectively.

noise [7–12]; (iii) finally, and most crucially, there is no opportunity to vary a characteristic
length scale for off-lattice patterns, in contrast to on-lattice ones, for which a variable capillary
length can be successfully introduced [13–16]. So all the above forces us to seek to elaborate
a method for growing isotropic DLA clusters still in lattice terms—our goal for the present
work.

For that purpose, we are going to use a mean-field generalization of the original DLA
model recently introduced and explored [25]. This generalization advances a discrete theory
of DLA by a quasicontinuum framework; as a remarkable outcome, resulting on-lattice patterns
are demonstrated to be fully independent of the underlying grid, i.e. isotropic for any lattice.
Thus to derive an isotropic version of the discrete DLA, we just have to transform relevant
growth rules and conditions accordingly.

A quasicontinuum lattice-independent extension of the DLA model is governed by the
following principal rule: ‘the probability of a walker aggregation P is directly proportional to
the squared mean cluster density (being a continuous function) in a lattice neighbourhood of
that walker’ [25]. For the discrete DLA, i.e. for a stairlike spatial distribution of a cluster density
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Figure 2. Typical DLA clusters grown on a square grid (x, y) of spacing a = 1 up to gyration radii
rg = 80a (number of particles attached N varies from 2000 to 3000); aggregation probabilities
{Pi} for lattice sites with different numbers i = 1, . . . , 3 of nearest occupied neighbours obey the
isotropic quadratic ratio requirement of equation (1): P1:P2:P3 = 1:4:9. We show results for the
classic DLA algorithm (plot (a)) and for the Tang multiple-hit averaging: parameter M = 21, 22

and 24 for plots (b), (c) and (d), respectively.

field (either 1 or 0 at occupied or unoccupied lattice sites), this rule is therefore transformed to
the next one: ‘the aggregation probability P is directly proportional to the squared number of
occupied sites neighbouring that walker’; in other words, the set of aggregation probabilities
{Pi} for lattice sites (e.g., of having one occupied neighbour, P1, two occupied neighbours, P2,
three occupied neighbours, P3, etc) should obey the relation

P1:P2:P3: · · · :Pi = 12:22:32: · · · i2 = 1:4:9: · · · , (1)

to provide isotropic growth of on-lattice DLA clusters.
To demonstrate the validity of the relation derived, let us consider the DLA taking place on

a square grid (x, y) and assume there only nearest-neighbourhood interactions (i.e. each lattice
site has four equivalent neighbours) [1]; corresponding patterns are presented in figures 1 and 2.
DLA clusters simulated with a regular set of aggregation probabilities, P1 = P2 = P3 = 1,
are shown in figure 1—we plot typical patterns grown by the classic Witten–Sander algorithm
(figure 1(a)) and according to the multiple-hit averaging of Tang (figures 1(b)–(d)); all the
patterns obtained are characterized by an anisotropic behaviour which increases monotonically
with the parameterM = 21, . . . , 24, a counter of the multiple-hit averaging [7]. One can resolve
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Figure 3. Statistical analysis of DLA clusters grown on a square grid (x, y) of spacing a = 1
up to gyration radii rg = 120a (number of particles attached N varies from 4000 to 5000).
(a), (b) Spatial distribution of an average cluster density ρ(x, y) over an ensemble of 1000 similar
clusters, shown for the first quadrant of the square grid, x > 0 and y > 0 (the density increases
with palette darkness); aggregation probabilities {Pi} obey either the regular Witten–Sander law,
P1 = P2 = P3 = 1 (plot (a)), or exhibit the isotropic quadratic ratio given by equation (1),
P1:P2:P3 = 1:4:9 (plot (b)). (c) Angular distribution of the average cluster density, dρ/dϕ,
computed for clusters grown according to the regular Witten–Sander algorithm (see plot (a)) and
the quadratic ratio one (see plot (b)).

a preferred growth in the main lattice directions, 〈10〉, 〈01〉, 〈1̄0〉 and 〈01̄〉, i.e. regular DLA
algorithms with noise reduction simulate anisotropic (dendritic) patterns [8–12]. In contrast,
DLA clusters in figure 2 simulated with the set of aggregation probabilities {Pi} according to
equation (1), P1:P2:P3 = 1:4:9, are reported to be isotropic in case of the multiple-hit averaging
(figures 2(b)–(d)) as well as in case of the classic DLA (figure 2(a)); only the capillary length
of these patterns is varied, increasing with M , whereas no preferred growth directions are
observed.

In order to give a quantitative proof for our isotropic quadratic ratio given by equation (1),
let us focus on an ensemble statistics of DLA clusters; corresponding results are summarized
in figure 3. As seen, the ensemble-averaged cluster density ρ(x, y) for regular Witten–Sander
patterns demonstrates preferred growth along the x- and y-axes (figures 3(a) and (c))—angular
distribution of the cluster density dρ/dϕ is maximal in the main lattice directions (ϕ = 0◦ and
90◦) and is at its minimum along the x = y diagonals (ϕ = 45◦) [6]. In contrast, for quadratic
ratio DLA patterns, one can observe purely isotropic spatial behaviour (figures 3(b) and (c))—
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Figure 4. Typical large-scale DLA clusters containing N = 100 000 particles grown on a square
grid (x, y) of spacing a = 1 (gyration radii rg ≈ 1000a); aggregation probabilities {Pi} obey either
the regular Witten–Sander law, P1 = P2 = P3 = 1 (plot (a)), or exhibit the isotropic quadratic
ratio given by equation (1), P1:P2:P3 = 1:4:9 (plot (b)).

the angular density distribution dρ/dϕ behaves as an approximately constant function slightly
perturbed by stochastic noise.

As an additional confirmation of the conclusions derived above from the analysis of
medium-scale DLA clusters presented in figures 1–3 (gyration radii rg ≈ 100 lattice units),
we have also extended our simulations to large-scale DLA clusters (rg ≈ 1000 lattice units)
containing up to N = 100 000 particles; corresponding patterns are shown in figure 4. On
such length scales, one can clearly resolve for a regular Witten–Sander cluster (figure 4(a))
preferred growth along the main lattice directions, 〈10〉, 〈01〉, 〈1̄0〉 and 〈01̄〉, which is always
reported for the square grid [3–6]. In contrast, for a quadratic-ratio DLA cluster (figure 4(b))
there is absolutely no anisotropy and the pattern obtained looks very similar to the off-lattice
ones [21] (it is possible even to resolve a kind of fivefold symmetry known for off-lattice DLA
clusters in two dimensions [26, 27]).

Thus we conclude that the isotropic quadratic ratio derived for the DLA model
(equation (1)) is satisfactorily verified by three independent techniques: (i) multiple-hit
averaging by Tang’s algorithm; (ii) statistical analysis of a cluster ensemble; and (iii) large-
scale simulations. We believe that the application of our on-lattice isotropic scheme will be
extremely useful for modelling very large DLA fractals [28].
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